HiRISE Coupling SPHERE and CRIRES+ to characterise young giant exoplanets

Arthur Vigan

Laboratoire d'Astrophysique de Marseille / CNRS

Gilles Otten, Eduard Muslimov, Kjetil Dohlen, Mark Phillips, Ulf Seemann, Jean-Luc Beuzit, Reinhold Dorn, Markus Kasper, David Mouillet, Isabelle Baraffe, Ansgar Reiners

Atmospheric composition of exoplanets

Zurlo, Vigan et al. (2016)

Outstanding questions to be answered with direct imaging

Extreme AO + coronagraphy in NIR

Exoplanet characterisation with SPHERE

Bonnefoy, Zurlo et al. [incl. Vigan] (2016) 5 High systematics 4 Flux [$\times 10^{-15}$ W/m²/ μm] 3 2 1 Low) spectral resolution 0 2.0 3.0 4.0 5.0 1.0 Wavelength [µm] HIP65426b IFS-YJ H2 H3 K1 K2 H₂O 1.5 H_2O Normalized flux Fel .0 0.5 BT-SETTL (T_{eff}=1650K, logg=4.5, M/H=0, R=1R _{km}) 1.2 1.0 1.4 1.6 2.0 2.2 1.8

Resolution limited to R=50 for the IFS

Wavelength [µm]

Arthur Vigan - HDC workshop - 2018-06-19

Low resolution by design

- IFS designed to search for planets: need for spatial & spectral information
 - Nyquist spatial sampling: 2 pixels/PSF at 0.95 μm
 - Number of pixels limited on a 2k*2k IR detector
- Consequence: maximum spectral resolution ~50 for YJ coverage (~30 for YJH)

Speckle noise limitation

long-lived, quasi-static speckles cause by instrumental aberrations §

AO residuals 🥌

small variations because of

varying observing conditions,

thermal drift, etc

How to measure the signal of the planet lost in speckle noise?

Arthur Vigan - HDC workshop - 2018-06-19

Exoplanet direct detection techniques

Based on diversity <u>intrinsic to</u> or <u>introduced in</u> the data

- <u>Angular diversity</u> → angular differential imaging (ADI, cADI, LOCI, KLIP, ANDROMEDA, ...)
- **<u>Spectral diversity</u>** → spectral differential imaging (SDI, SD, SSDI)
- **<u>Polarimetric diversity</u>** → polarimetric differential imaging (PDI, DPI)
- Velocity diversity → high-resolution spectroscopy techniques

→ Resolution of at least a few 10³ or 10⁴ needed to resolve individual lines in the planet spectrum and detect its RV

HCI and HRS for young exoplanets

• Nicely demonstrated on HR8799c and ß Pic b:

• HCI + HRS: ideal combination to reach contrasts better than 10⁻⁶

Arthur Vigan - HDC workshop - 2018-06-19

HCI and HRS for young exoplanets

• Nicely demonstrated on HR8799c and ß Pic b:

• HCI + HRS: ideal combination to reach contrasts better than 10⁻⁶

Arthur Vigan - HDC workshop - 2018-06-19

Young exoplanets characterisation

Young exoplanets characterisation

Arthur Vigan - HDC workshop - 2018-06-19

High-contrast exoplanet imager

High-resolution spectrograph

······ 🖌 ·····	Extreme adaptive optics	×	
······ 🖌 ·····	Coronagraphy	····· X	
Y J H K	Spectral coverage	YJHKLM	
50 - 350	Spectral resolution	50 000 - 100 000	

VLT/UT3

High-contrast exoplanet imager

High-resolution spectrograph

Arthur Vigan - HDC workshop - 2018-06-19

Arthur Vigan - HDC workshop - 2018-06-19

HiRISE fiber injection in SPHERE

HiRISE fiber injection in SPHERE

HiRISE fiber injection in SPHERE

Mechanical implementation in CPI

Mechanical implementation in CPI

Concept

Alternative concept

Optical design: tracking camera

Optical design: tracking camera

Optical design: fibre injection

	Fibre	Tracking
F/#	2.9	20
Linear FoV	±1.58 mm	±0.23 mm
Angular @ SPHERE stop	±0.45°	±0.45°
FoV @ sky	±2 arcsec	±2 arcsec
Focal length from pick-off	204.75 mm	29.44 mm
Spectral range	1.1-1.4 um	1.5-2.3 um

Photon share issues: NIR dichroic

- implemented IFS modes:
 - IRDIFS: 0.96 1.34 μm
 - IRDIFS-EXT: 0.97 1.66 μm
- current dichroics not ideal
 - only 20% flux in K-band
 - new dichroic would be much better

Current dichroic not ideal... to be changed?

NIR fibres for coupling

Number of fibres & geometry

Number of fibres & geometry

Number of fibres & geometry

Possible geometries

- At least 2 fibres needed: planet 🕟 + star 🕝
 - More → better sampling of the speckles
- Need for a centring 💿 fibre
- v fibre to stabilise CRIRES+ tip-tilt!

v
r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

Fibre positioning

- Most difficult issue: make sure that the planet falls on the fibre
- Required accuracy: probably better than $1/5^{th}$ of λ/D

- Current approach: we move the **image** w.r.t. the **fibre**
- Calibration of the fibre/image motion:
 - using waffle spots in narrow band filter
 - internal or on-sky calibration? mix of both?

CRIRES+

- NIR infrared echelle spectrograph
- Being upgraded to a cross-dispersion spectr.
 - new cross-dispersion gratings stage
 - new detectors
 - slit reduced from 40" to 10"

CRIRES+ detectors

- 3 new Hawaii-2RG detectors
 - much better cosmetics
 - improved quantum efficiency
 - much more pixels!

CRIRES+ wavelength coverage

Almost a full band in a single observation!

Κ

CRIRES+ calibration stage

- calibration stage in the warm part of the instrument
- AO system
- fibre output for calibration
 - could be used for SPHERE..
 - or new dedicated mount

Performance simulations: transmission

Performance simulations: transmission

• photometric end-to-end model built by Gilles Otten

Performance simulations: data analysis

Performance simulations: results

See more in Gilles' presentation!

Performance simulations: results

See more in Gilles' presentation!

Possible timeline

ELT/HARMONI

- first light ELT spectrograph
- SCAO
- high-contrast mode (shaped pupil)

Bands	Wavelengths [µm]	R
"V+R" or "I+z+J" or "H+K"	0.45-0.8, 0.8-1.35, 1.45-2.45	~3500
"I+z" or "J" or "H" or "K"	0.8-1.0, 1.1-1.35, 1.45-1.85, 1.95-2.45	~7000
"Z" or "J_high" or "H_high" or "K_high"	0.9, 1.2, 1.65, 2.2 (TBD)	~18000

 Night 1
 CCF BTSETTL 1700K

 0.0
 ★

 0.0
 ↓

 0.0
 ↓

 0.0
 ↓

 0.0
 ↓

 0.0
 ↓

 0.0
 ↓

 0.0
 ↓

 0.0
 ↓

 0.0
 ↓

 0.0
 ↓

 0.0
 ↓

 0.0
 ↓

 0.0
 ↓

 0.0
 ↓

 0.0
 ↓

 0.0
 ↓

 0.0
 ↓

 0.0
 ↓

 0.0
 ↓

 0.0
 ↓

 0.0
 ↓

 0.0
 ↓

 0.0
 ↓

 0.0
 ↓

 0.0
 ↓

 0.0
 ↓

 0.0
 ↓

 0.0
 ↓

 0.0
 ↓

 0.0
 ↓

 0.0
 ↓

 0.0
 ↓

 0.0
 ↓

 0.0
 ↓

 0.0

Arthur Vigan - HDC workshop - 2018-06-19

ELT/HARMONI

HARMONI - Gaia / HARMONI - RV synergies Mass - luminosity relationships !

Conclusions

- SPHERE and CRIRES+ is an opportunity to try testing HDC
- SPHERE / CRIRES+ coupling on-going
 - optical design almost ready
 - mechanical design starting
- Retrofiting instruments is not easy...
 - designing a system that does not interfere with the instrument
 - available space in SPHERE
 - throughput issues
 - very long length of NIR fibre
 - operational model
- Project not formally accepted by ESO yet
 - discussions will start at the end of phase A

http://astro.vigan.fr/

arthur.vigan@lam.fr

@ArthurVigan