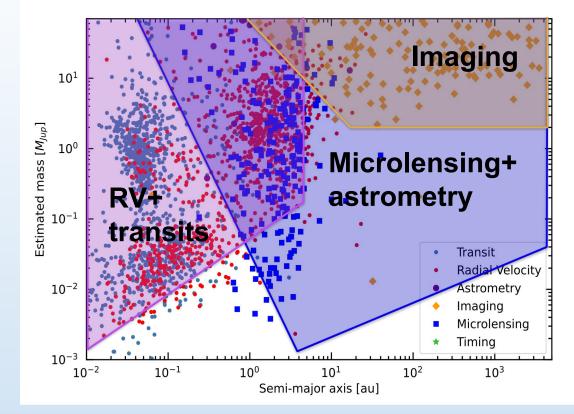

Architecture of planetary systems

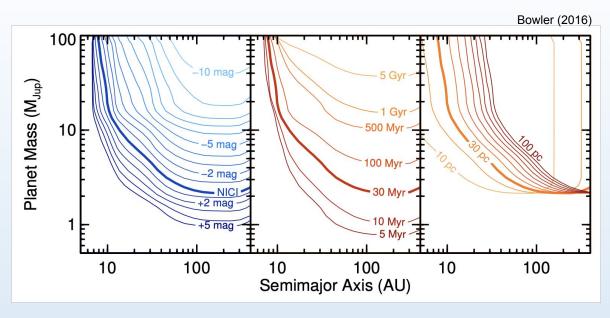
Arthur Vigan & Xavier Bonfils


(Empiral) parameter space

- Exploration of a vast parameter space
- Large number of detections
- Sample large enough to identify several classes of objects → comparative planetology!

(Empiral) parameter space

- Exploration of a vast parameter space
- Large number of detections
- Sample large enough to identify several classes of objects → comparative planetology!



Biases in large surveys

- Astrophysical biases:
 - Age
 - Distance
 - Stellar magnitudes
 - Rotation
 - o ...
- Instrumental limitations
 - Contraste
 - Stellar magnitudes (AO)
 - Photon noise
 - Accuracy in velocity

o ...

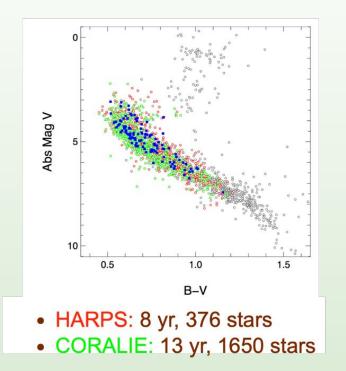
- Theoretical biases:
 - Mass determination using evolutionary tracks!
 - o ...

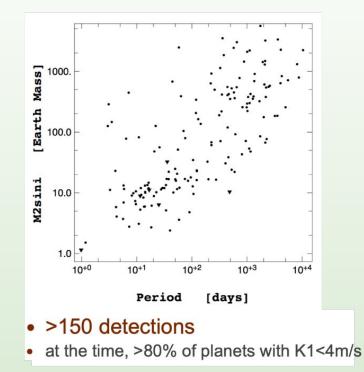
Important to debias the results! (as much as possible)

09/11/2022

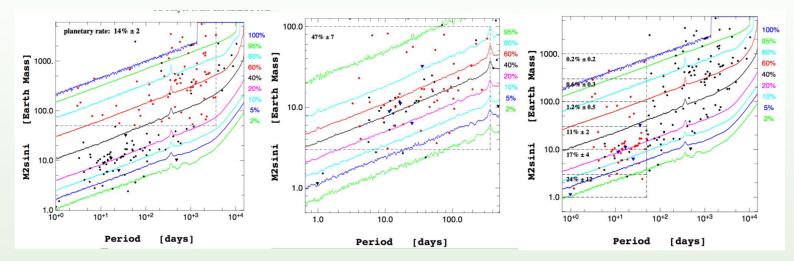
Statistical properties from RV and transit

The HARPS search for southern extra-solar planets

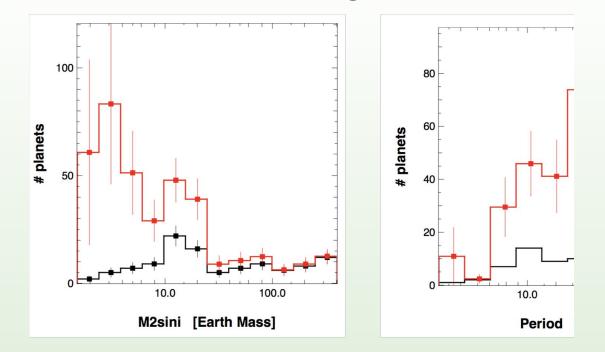

XXXIV. Occurrence, mass distribution and orbital properties of super-Earths and Neptune-mass planets*


M. Mayor¹, M. Marmier¹, C. Lovis¹, S. Udry¹, D. Ségransan¹, F. Pepe¹, W. Benz², J.-L. Bertaux³, F. Bouchy⁴, X. Dumusque¹, G. LoCurto⁵, C. Mordasini⁶, D. Queloz¹, and N.C. Santos^{7,8}

Mayor et al. (2011) astro-ph/1109.2497


see also

Lovis et al. (2008) proc. in IAUS253

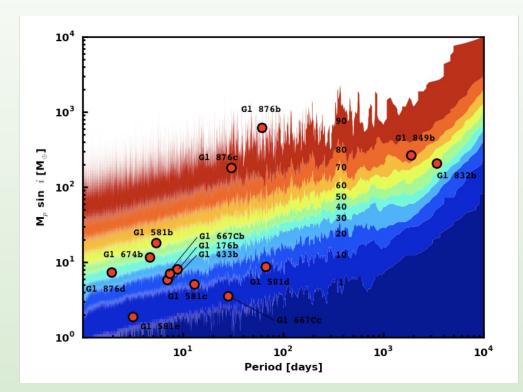

HARPS Mass-Period diagram

	Mass limits	imits Period limit Planetary rate based on		Planetary rate	Comments	
			published planets	including candidates		
	$> 50 M_{\oplus}$	< 10 years	13.9 ± 1.7 %	$13.9 \pm 1.7 \%$	Gaseous giant planets	
	$> 100 M_{\oplus}$	< 10 years	9.7 ± 1.3 %	9.7 ± 1.3 %	Gaseous giant planets	
	$> 50 M_{\oplus}$	<11 days	$0.89 \pm 0.36\%$	$0.89 \pm 0.36\%$	Hot gaseous giant planets	
	Any masses	< 10 years	$65.2 \pm 6.6 \%$	75.1 ± 7.4 %	All "detectable" planets with $P < 10$ years	
	Any masses	< 100 days	50.6 ± 7.4 %	$57.1 \pm 8.0\%$	At least 1 planet with $P < 100$ days	
	Any masses	< 100 days	$68.0 \pm 11.7 \%$	68.9 ± 11.6 %	F and G stars only	
	Any masses	< 100 days	$41.1 \pm 11.4\%$	52.7 ± 13.2 %	K stars only	
	$< 30 M_{\oplus}$	< 100 days	47.9 ± 8.5 %	54.1 ± 9.1 %	Super-Earths and Neptune-mass planets on tight orbits	
09/11/202	$< 30 M_{\oplus}$	< 50 days	38.8 ± 7.1 %	45.0 ± 7.8 %	As defined in Lovis et al. (2009)	

7

HARPS Mass and Period histograms

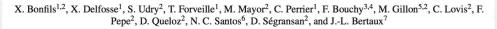
HARPS Multiplicity

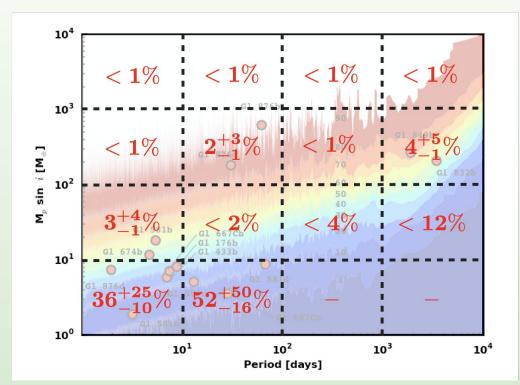

- m sin i < 30 Mearth: multiplicity > 70%
- m sin i > 30 Mearth: multiplicity ~ 25%

The HARPS search for southern extra-solar planets*

XXXI. The M-dwarf sample

Bonfils et al. (2013) astro-ph/1109.2497

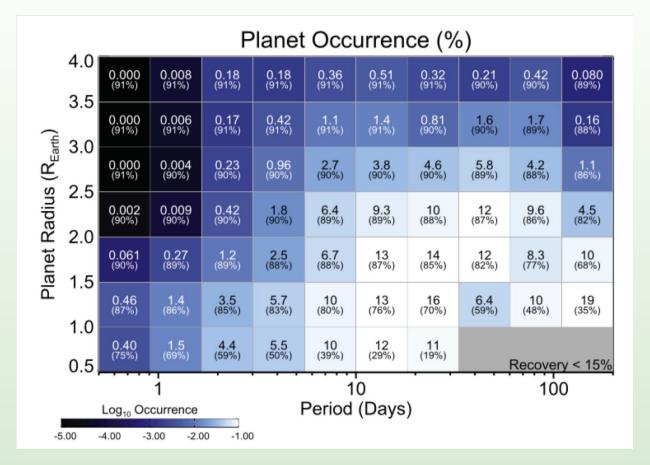

X. Bonfils^{1,2}, X. Delfosse¹, S. Udry², T. Forveille¹, M. Mayor², C. Perrier¹, F. Bouchy^{3,4}, M. Gillon^{5,2}, C. Lovis², F. Pepe², D. Queloz², N. C. Santos⁶, D. Ségransan², and J.-L. Bertaux⁷



The HARPS search for southern extra-solar planets \star

XXXI. The M-dwarf sample

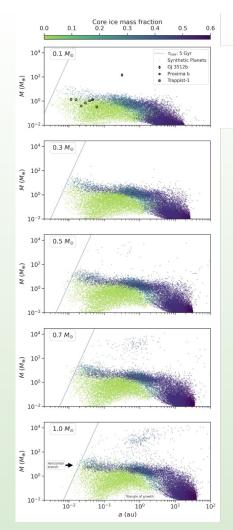
Bonfils et al. (2013) astro-ph/1109.2497



09/11/2022

Sabotta et al.: Planet occurrence rates from a subsample of 71 CARMENES M dwarfs CARMENES 2021 100 10³ ☆ 80 ☆ ☆ Detection probability in % 10^{2} · ☆ 60 \star $M \sin i (M_{\oplus})$ ☆ ☆ 222 - 40 \bigstar ☆ 10^{1} ☆☆ T'S - 20 100 0 · 1 10^{2} 10^{1} 10³ Period (d)

Fig. 2. CARMENES GTO survey detection completeness for the subsample of 71 stars. The color map indicates the average detection probability of the corresponding period-mass combination. Yellow stars indicate planets discovered by CARMENES (error bars are sometimes smaller than the marker size).


Dressing & Charbonneau (2015)

09/11/2022

s://exoplanetarchive.ipac.caltech.edu/docs/occurrence_rate_papers.html

		-	-	• • •				
Home At	out Us	Data	Tools	Support	Login			
Planet Occurrence R	ate Papers							
	ation of published,	refereed papers th	nat derive planet occi	urrence rates. To suggest	a paper for inclusion on this	s page, please submit a Helpo		
cket.						-1		
Author(s) and Publicatio Year	1	Title						
Kunimoto et al. (2021)	Combining Tra	ansit and Radial Vel	ocity: A Synthesized	Population Model		AJ 161 69		
Bryson et al. (2021)	The Occurrent	The Occurrence of Rocky Habitable-zone Planets around Solar-like Stars from Kepler Data				AJ 161 36		
Poleski et al. (2021)	Wide-Orbit Ex	oplanets are Comm	non. Analysis of Nearl	y 20 Years of OGLE Micro	lensing Survey Data	AcA 71 1		
Jin, Sheng (2021)	Relative occur	rence rates of terre	strial planets orbiting	FGK stars		MNRAS 502 5302		
Yang, Jia-Yi, Xie, Ji-Wei, & Zhou, Ji-Lin (2020)	Occurrence ar Temperature	Occurrence and Architecture of Kepler Planetary Systems as Functions of Stellar Mass and Effective						
Bashi et al. (2020)	Occurrence ra	tes of small planets	from HARPS: Focus	on the Galactic context		A&A 643 A106		
Lu, Schlaufman, & Cheng (2020)		An Increase in Small-planet Occurrence with Metallicity for Late-type Dwarf Stars in the Kepler Field and Its Implications for Planet Formation						
Bryson et al. (2020) CR	A Probabilistic	A Probabilistic Approach to Kepler Completeness and Reliability for Exoplanet Occurrence Rates						
Kunimoto & Bryson (2020)		Comparing Approximate Bayesian Computation with the Poisson-Likelihood Method for Exoplanet Occurrence Rates						
Kunimoto & Matthews (2020) Searching the	Searching the Entirety of Kepler Data. II. Occurrence Rate Estimates for FGK Stars						
Bryson (2020)	Exoplanet Occ	Exoplanet Occurrence Rates of Mid M-dwarfs Based on Kepler DR25						
Dai et al. (2019)	Planet Occurr	Planet Occurrence Rate Correlated to Stellar Dynamical History: Evidence from Kepler and Gaia						
Bashi & Zucker (2019)		Small Planets in the Galactic Context: Host Star Kinematics, Iron, and Alpha-element Enhancement						
Hsu, Ford, & Ragozzine (20		Occurrence Rates of Planets Orbiting FGK Stars: Combining Kepler DR25, Gaia DR2, and Bayesian						
He, Ford, & Ragozzine (201	Architectures	Architectures of exoplanetary systems - I. A clustered forward model for exoplanetary systems around Kepler's FGK stars				MNRAS 490 4575		
Herman, Zhu, & Wu (2019)				riod Transiting Planets from Kepler				
Kawahara & Masuda (2019)	-	Transiting Planets Near the Snow Line from Kepler. I. Catalog				AJ 157 248 AJ 157 218		
Mulders et al. (2019)	-	The Exoplanet Population Observation Simulator. II. Population Synthesis in the Era of Kepler				ApJ 887 157		
Grunblatt et al. (2019)	Giant planet occurrence within 0.2 au of low-luminosity red giant branch stars with K2					AJ 158 227		
Fernandes et al. (2019)					ApJ 874 81			
Hardegree-Ullman et al. (20					Туре	AJ 158 75		
Bryan et al. (2018)		An Excess of Jupiter Analogs in Super-Earth Systems				AJ 157 52		
van Sluijs, L. and Van Eylen, (2018)								
Mulders et al. (2018)	The Exoplane	The Exoplanet Population Observation Simulator. I. The Inner Edges of Planetary Systems				AJ 156 24		
Pascucci et al. (2018)	A Universal Break in the Planet-to-star Mass-ratio Function of Kepler MKG Stars				ApJ 856L 28			
Narang et al. (2018)		Properties and occurrence rates of Kepler exoplanet candidates as a function of host star metallicity from the						
Meyer et al. (2018)		M Dwarf Exoplanet Surface Density Distribution: A Log-Normal Fit from 0.07-400 au						
Zhu et al. (2018)				y Systems: A Study of the		A&A 612 L3 ApJ 860 101		
Petigura et al. (2018)				a Greater Diversity of Pla		AJ 155 89		
Fulton et al. (2017)						AJ 154 109		
Fulton et al. (2017) The California-Kepler Survey. III. A Gap in the Radius Distribution of Small Planets Meshkat et al. (2017) A Direct Imaging Survey of Spitzer detected debris disks: Occurrence of giant planets in dusty systems						AJ 154 245		

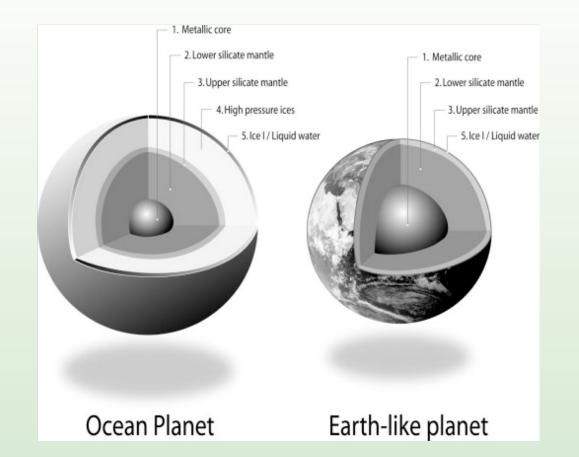
09/11/2022

The New Generation Planetary Population Synthesis (NGPPS) IV. Planetary systems around low-mass stars*

R. Burn^{1,2}, M. Schlecker², C. Mordasini¹, A. Emsenhuber^{1,3}, Y. Alibert¹, T. Henning², H. Klahr² and W. Benz¹

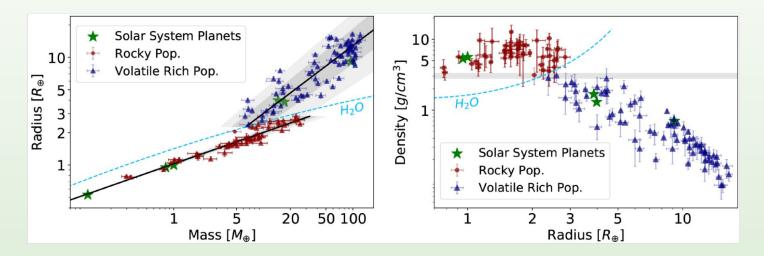
 Table 3. Fraction of systems with specific planetary types for the different stellar mass populations with initially 50 lunar-mass embryos

	Stellar mass (M _☉)					
Туре	0.1	0.3	0.5	0.7	1.0	
$M > 1 M_{\oplus}$	0.44	0.77	0.88	0.91	0.95	
Earth-like	0.70	0.88	0.89	0.89	0.84	
Super Earth	0.19	0.54	0.71	0.78	0.79	
Neptunian	0.01	0.08	0.17	0.22	0.27	
Sub-giant	0.00	0.00	0.02	0.03	0.05	
Giant	0.00	0.00	0.02	0.09	0.19	
Temperate zone	0.35	0.66	0.70	0.66	0.57	


Atelier Exo-ELT

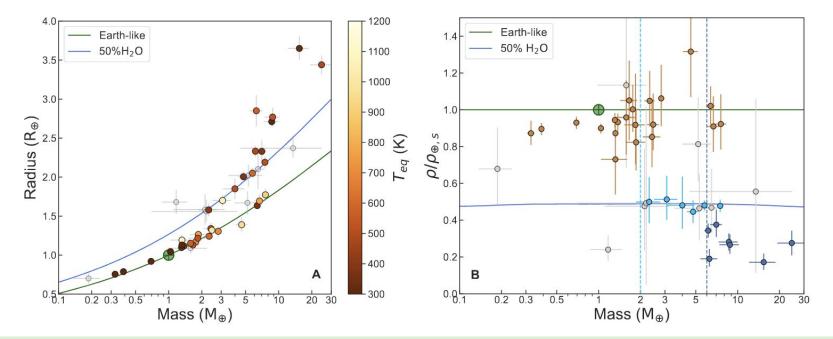
14

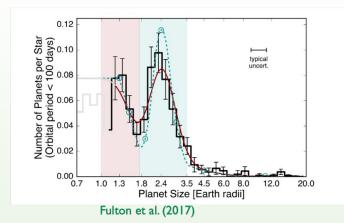
Statistical properties - mass-radius

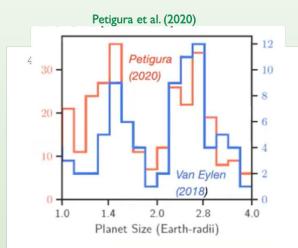

- the radius gap

Combination : Mass-radius relations

Revisited mass-radius relations for exoplanets below 120 M_{\oplus}


J. F. Otegi^{1,2}, F. Bouchy² and R. Helled¹




 $R = \begin{cases} (1.03 \pm 0.02) \ M^{(0.29 \pm 0.01)}, & \text{if } \rho > 3.3 \text{ g cm}^{-3} \\ (0.70 \pm 0.11) \ M^{(0.63 \pm 0.04)}, & \text{if } \rho < 3.3 \text{ g cm}^{-3}, \end{cases} \qquad M = \begin{cases} (0.90 \pm 0.06) \ R^{(3.45 \pm 0.12)}, & \text{if } \rho > 3.3 \text{ g cm}^{-3} \\ (1.74 \pm 0.38) \ R^{(1.58 \pm 0.10)}, & \text{if } \rho < 3.3 \text{ g cm}^{-3}. \end{cases}$

Density, not radius, separates rocky and water-rich small planets orbiting M dwarf stars

Rafael Luque^{1,2,*} & Enric Pallé^{3,4,†}

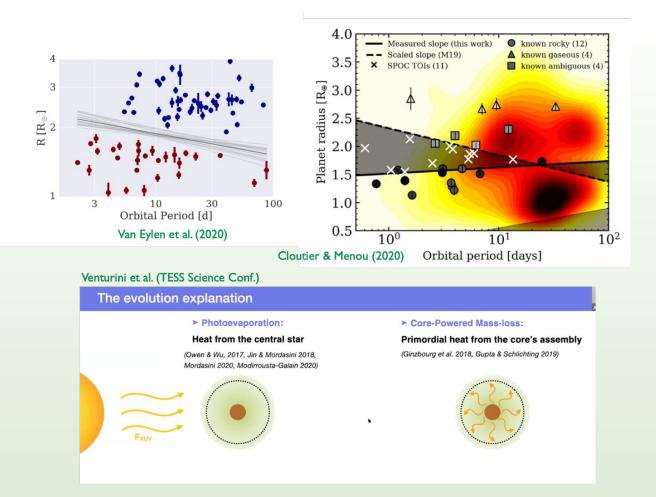
- Fulton et al. (2017)
- van Eylen et al. (2018)
- See also Petigura (2020)
- rocky transition @ ~1.8 Rearth
- might correlate with P
- Rocky vs volatile-rich
 + H/He enveloppe
- 1.8 Rp ~ 8 Mearth below TESS sensitivity?

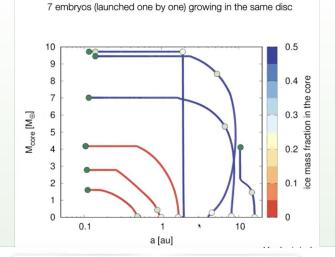
30

100

Van Eylen et al. (2018)

10

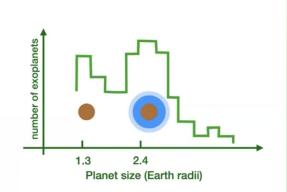

Orbital Period [d]

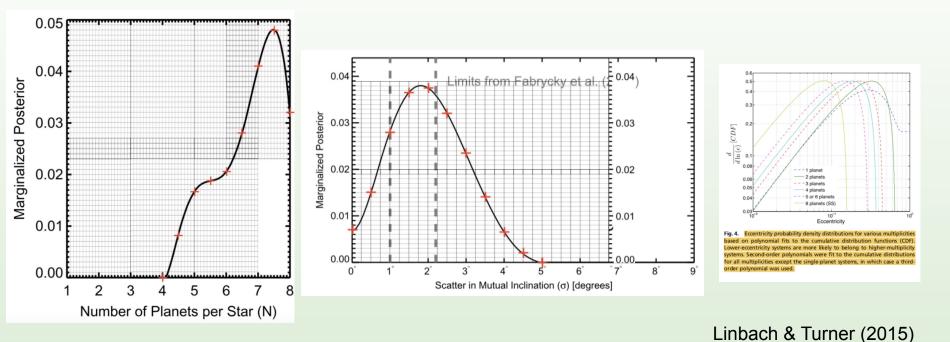

4

3

 $R [R_{\oplus}]$

3

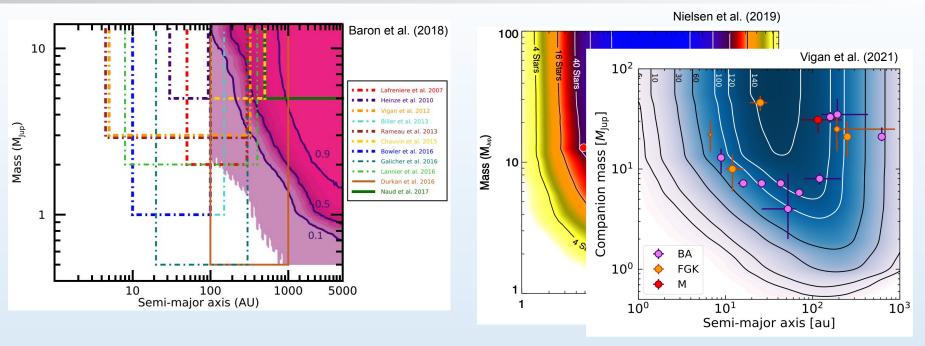



- Due to the change of the pebbles' properties at the water ice line, pebble accretion leads to two distinct core populations: icy and large vs. rocky and small cores.
 - Such bimodality from birth leaves a "valley" imprint on the size distribution of short period exoplanets.
 - Atmospheric escape after formation must take place the get the bare rocky cores of the first peak.
 - Processes that hinder gas accretion and/or promote atmospheric escape must take place to account for the second peak. Also to better agree with the massradius of short period exoplanets.

Venturini (TESS Science Conf.)

Venturini et al. (2020,A&A)

Statistical properties of multi-planets

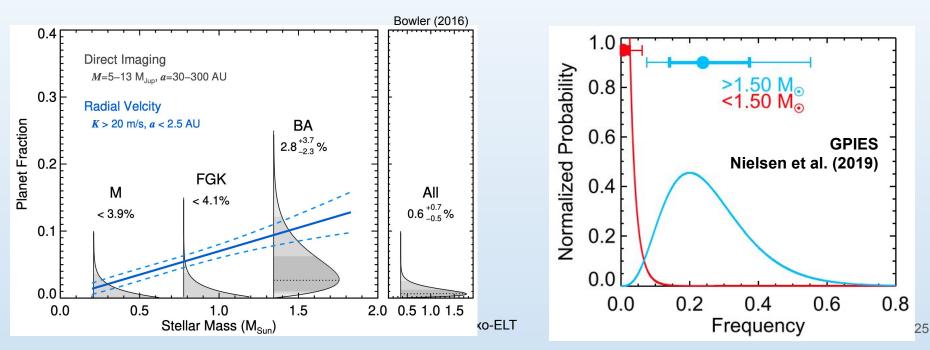


Ballard & Johnson (2016)

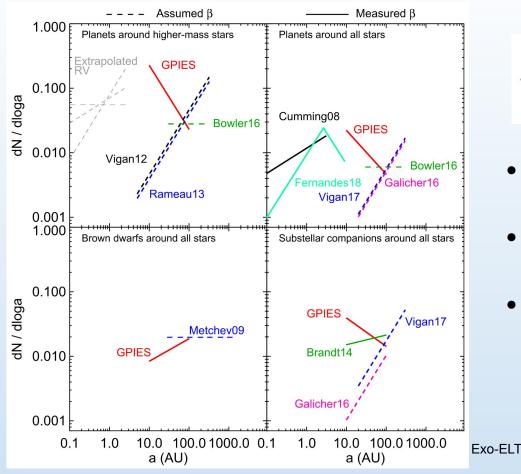
09/11/2022

Statistical properties Of distant companions

Giant planets at large separations: occurrence

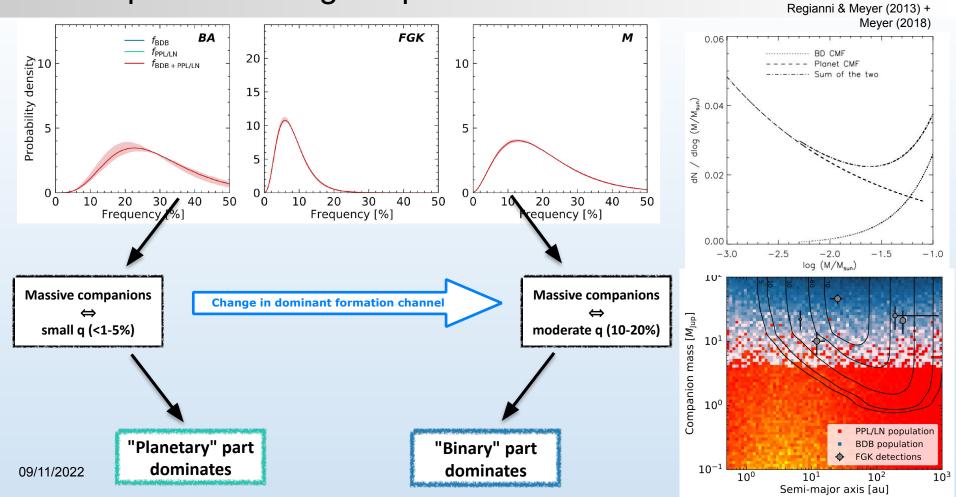

Large range of values depending on the adopted boundaries in mass/separation, spectral types, and assumed planet distributions, but globally: 10-100 au 100-300 au >500 au

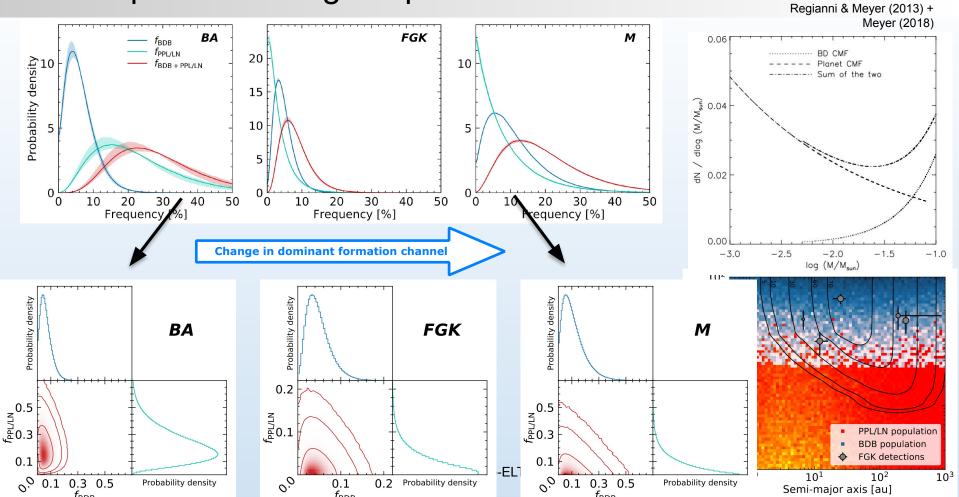
5-10 % 5-10 % <1%


Atelier Exo-ELT

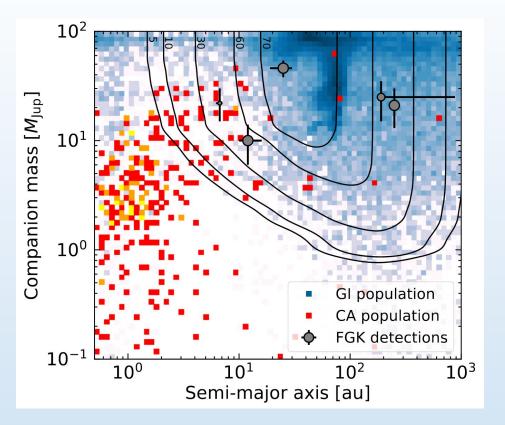
Giant planets at large separations: occurrence

- Strong correlation with the host spectral type
 - Trend identified with early detections (β Pic, HR8799, Fomalhaut) + RV on evolved A stars (Johnson et al. 2010, 2011)
 - Confirmed with dedicated surveys (Vigan et al. 2012; Rameau et al. 2013) + SHINE + GPIES

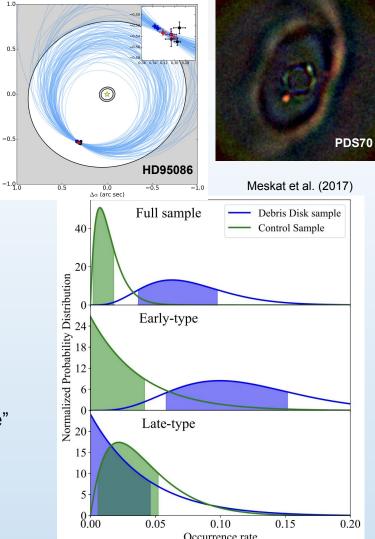

Giant planets at large separations: occurrence


$$\frac{d^2N}{dm\ da} = f\ C_1\ m^{\alpha}\ a^{\beta} \left(\frac{M_*}{1.75\ M_{\odot}}\right)^{\gamma}$$

- Purely empirical underlying distribution of planets in mass/semi-major axis
- Not physically realistic, limited, and potentially optimistic
- Enough detections to fit these parameters based on the results of large surveys


Giant planets at large separations: formation

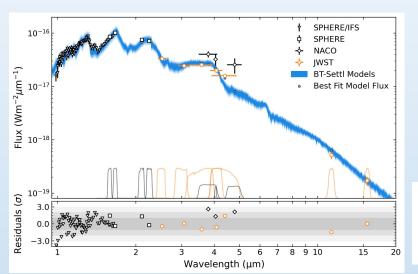
Giant planets at large separations: formation

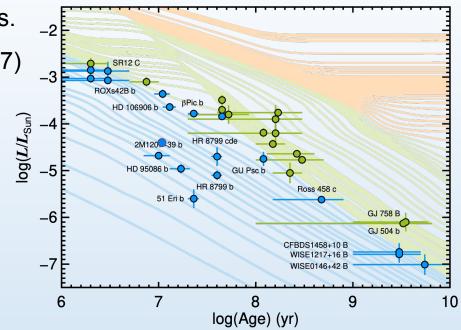

Giant planets at large separations: formation

- Next logical step: direct comparison with population synthesis models
- <u>1</u> Many simplifications in the populations
- Current view of giant planet formation around FGK stars:
 - Slight predominance of CA
 - TBC with larger sample, updated models
 - + extension at all spectral types

Disk-planet connection

- Planets form in disks 🙄
- Several known companions in systems with a disk: β Pic, HR8799, HD95086, PDS70, ...
- Multiple targeted surveys looking at stars with known debris disks (imaging or SED fitting)
- Special interest for systems with a "double belt":
 - Warm inner asteroid-like belt
 - Dust-free gap
 - Cool outer belt
- E.g. Meshkat et al. (2017)
 - Marginally significant difference between the "disk sample" and the "control sample"
 - Need to be explored with larger samples

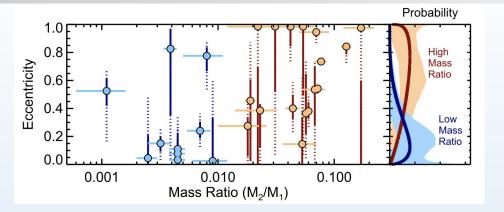



Atelier Exo-ELT

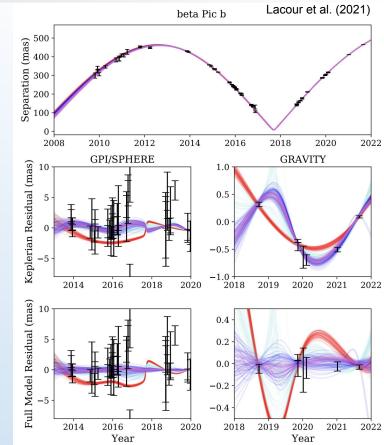
(arc sec)

Bolometric luminosity & mass of substellar companions

- Companions over a wide range of ages and luminosities
- Informs about formation process → cold vs.
 warm vs. hot (Marley 2007; Mordasini 2017)
- Luminosity measurements are going to increase with JWST! (e.g. Carter 2022)



The JWST Early Release Science Program for Direct Observations of Exoplanetary Systems I: High Contrast Imaging of the Exoplanet HIP 65426 b from 2–16 μ m


AARYNN L. CARTER ^(D),¹ SASHA HINKLEY ^(D),² JENS KAMMERER ^(D),³ ANDREW SKEMER ^(D),¹ BETH A. BILLER ^(D),⁴ JARRON M. LEISENRING ^(D),⁵ MAXWELL A. MILLAR-BLANCHAER ^(D),⁶ SIMON PETRUS ^(D),^{7,8} JORDAN M. STONE ^(D),⁹

Bowler (2016) Tracks from Burrows et al. (1997)

Orbits

- Study of Bowler et al. (2020) on eccentricity:
 - Different regimes as a function of mass ratio
 - Small sample, small orbital coverage
- ExoGRAVITY (PI Lacour):
 - High-accuracy relative astrometry
 - Determination of orbits for a significant sample of companions
 - Multi-planet analysis from perturbed Keplerian motion

Gravitational microlensing

FIGURE 2.5 A broken power-law fit to the frequency of planets per log mass ratio q per log semimajor axis a, as a function of planet/star mass ratio q, as measured by the Microlensing Observations in Astrophysics (MOA) microlensing survey, is shown as the black dotted line. The uncertainty around this fit is shown as the gray shaded region. This frequency is compared to several other results on the frequency of planets in this plane using various methods and for various ranges of mass ratio and semimajor axis, as labeled. SOURCE: Suzuki et al. (2016).

- Probe populations down to
 - Large orbital separations
 - Small planetary masses
- Complementarity with imaging... but limited for follow-up
- Very efficient at population level
- Some interesting results:
 - Sumi 2011: large population of free-floating Jupiter-like objects
 - Suzuki 2016: break in the mass function at q⁻⁴ (~20 M⊕ for ~0.6M☉)

Landscape when ELT will start operations

Priorités

- Inventaires des planètes proches
- transits

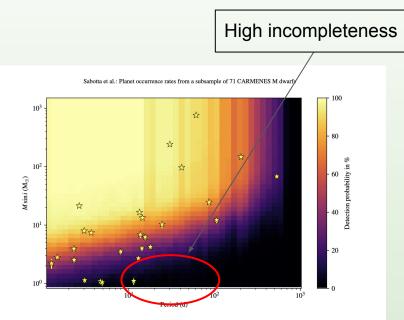
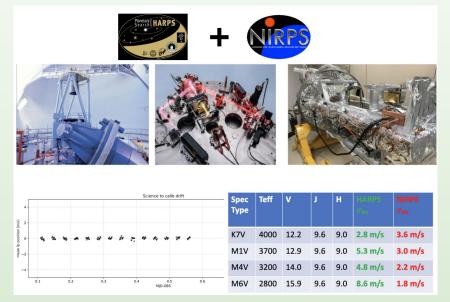
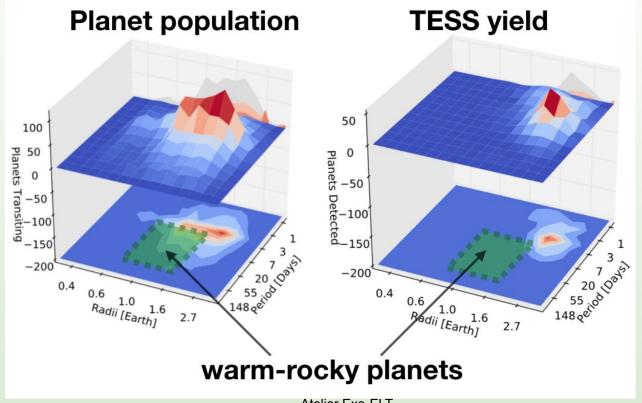
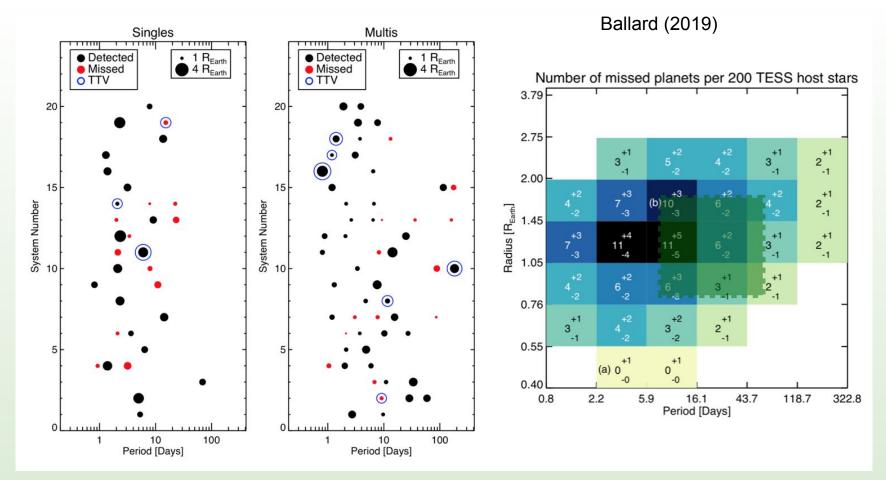



Fig. 2. CARMENES GTO survey detection completeness for the subsample of 71 stars. The color map indicates the average detection probability of the corresponding period-mass combination. Yellow stars indicate planets discovered by CARMENES (error bars are sometimes smaller than the marker size). Continuous exploration of the parameter space.

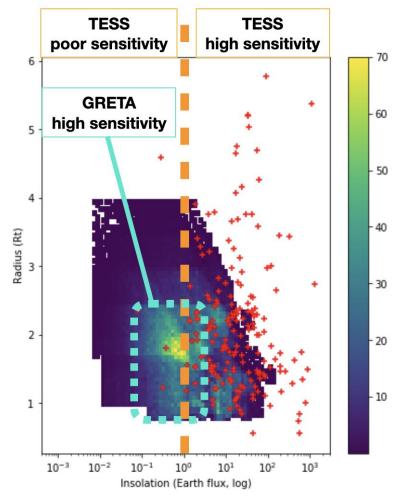

- RV (ESPRESSO, NIRPS, CARMENES,)
- TESS, PLATO
 + SOL (SPECULOOS, EXTRA, ...)


09/11/2022

Atelier Exo-ELT

Census of exo-earths ?

Atelier Exo-ELT



"Among [...] 200 TESS hosts to one or more detected planets, 116+/-28 planets [are] missed. Transit follow-up efforts with the photometric sensitivity to of the form of a mid-M dwarf, even with very modest and the stand of the second a mid-M dwarf, even with very modest and the second sec

Deep Search project

- Now anchored in actual TESS detections
- Follow-up with transit photometry (ExTrA, CHEOPS...)
- & radial velocity (HARPS+NIRPS, ESPRESSO)

Planets are already discovered this way E.g. LHS1140c, SPECULOS-2c, ...



Microlensing, astrometry, imaging

- Microlensing:
 - Roman Space Telescope/WFI
 - Maybe combined with a Euclid survey to break some degeneracies (still TBC)
 - Huge statistics on distant companions... but follow-up almost impossible
- Astrometry:
 - Gaia DR4
 - Potentially huge sample of candidates
 - \circ Combined with RV \rightarrow full orbital parameters for a significant number of systems
- Imaging:
 - Final results of SHINE, GPIES, BEAST. Maybe other large surveys, e.g. GPIES North, KPIC?
 - SAXO+ operational
 - Smaller targeted surveys
 - 5 years of JWST → physical parameters for a significant sample of companions

09/11/2022

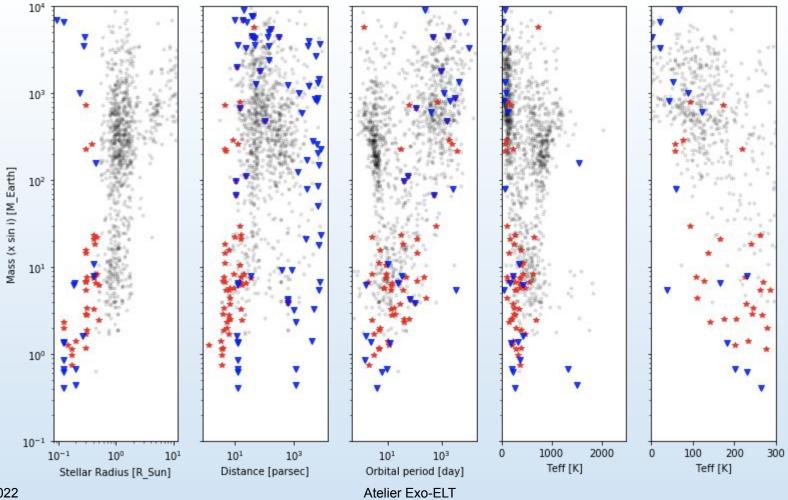
Atelier Exo-ELT

What will the ELT do for exoplanet demography?

- Unlikely to have large surveys with the ELT → targeted search & characterization of known (or suspected) systems
 - Gaia candidates
 - Some follow-up of µlensing events at high angular resolution?
- Systems with distant companions:
 - \circ Long periods need long baselines \rightarrow follow-up for orbital monitoring with ELT
 - Exploration of internal parts of known systems
 - Exomoons and exorings?
- ...
- •
- lacksquare
- Complementarity with VLT? Some UTs in survey mode?

Disk connection ?

Quel instrument va faire quoi pour l'architecture ?


- Y a t il des lunes ? des anneaux ?
- Imager les régions internes des systèmes connus
- Échantillon de candidats GAIA à caractériser

- (VLT en mode survey ?)

_

Observables et paramètres estimés

Méthode	VR	Transit	Imagerie	Astrométrie	µlentilles
Observables	Vitesse radiale étoile	Luminosité étoile	Luminosité planète Astrométrie relative	Mouvement étoile	Luminosité étoile
Paramètres estimés	M _p .sin(i), paramètres orbitaux	R _p , paramètres orbitaux	M _p (modèles), paramètres orbitaux	M _p , paramètres orbitaux	M _p

09/11/2022

44