

Direct characterization of young giant exoplanets at high spectral resolution

Arthur Vigan

Laboratoire d'Astrophysique de Marseille (LAM) Centre National de la Recherche Scientifique (CNRS)

LAM: A. Vigan, M. El Morsy, M. Lopez, G. Otten, J. Garcia, J. Costes, E. Muslimov, A. Viret, Y. Charles, A. Costille, M. Houllé, A. Abinanti, P. Balard, J.-A. Benedetti, P. Blanchard, J.-L. Beuzit, E. Choquet, P. Cistofari, K. Dohlen, T. Ely, N. Garcia, M. Jaquet, F. Jaubert, J. Le Merrer, R. Pourcelot, C. Sehim, N. Tchoubaklian, P. Tomlinson / University of Göttingen: H. Anwand-Heerwart, A. Reiners / ESO Charching: G. Zins, J. Paufique, U. Seemann, R. Dorn, M. Kasper, D. Popovic / ESO Paranal: L. Blanco, E. Fuenteseca, L. Pallanca, R. Schmutzer, A. Smette, J. Valenzuela Soto / University of Exeter: M. Phillips, I. Baraffe / Laboratoire Lagrange: M. N'Diaye, R. Pourcelot / Durham: G. Murray / Padova: S. Desidera / IPAG: A.-L. Maire, S. Rochat

Direct imaging of exoplanetary systems

PDS 70 - Keppler et al. (2018)

Direct imaging of exoplanetary systems

PDS 70 - Keppler et al. (2018)

Physical units

Observables

Observables

Direct imaging recipe

Direct imaging recipe

Arthur Vigan - PRL - 2023-11-09

SPHERE @ UT3

2-8-2-

二二二 二二

100

Ð

WREDUCT

D

າດຕາມ

\'সত

Arthur Vigan - PRL - 2023-11-09

n

WREDUCT

л

Þ

שרא ונאס נ

Direct imaging recipe

Diffraction-limited PSF ✓ Adaptive optics × Coronagraph

Diffraction-limited PSF ✓ Adaptive optics × Coronagraph Coronagraphic image ✓ Adaptive optics ✓ Coronagraph

Populations analysis

Keppler et al. 2018

Cheetham et al. 2018

Chauvin et al. 2017

Populations analysis

Populations analysis

Arthur Vigan - PRL - 2023-11-09

Detections with high-contrast instruments

Chauvin et al. 2017

Detections with high-contrast instruments

Detections with high-contrast instruments

Spectral content

Spectral content

Orbital and rotational information

Orbital and rotational information

Effect of orbital motion

Orbital and rotational information

A few numbers...

A few numbers...

It's hard!!

HST/ACS simulation

Sparks & Ford (2002)

Bright Earth template CCF

Arthur Vigan - PRL - 2023-11-09

Exoplanet science at high resolution

Exoplanet science at high resolution

Arthur Vigan - PRL - 2023-11-09

Young exoplanets characterisation in near-IR

Young exoplanets characterisation in near-IR

Young exoplanets characterisation in near-IR

A European opportunity in the South

Existing instruments on 8-10 m telescopes with ExAO:

- **Keck/KPIC:** D. Mawet, Caltech **[on-sky since 2020!]**
- **Subaru/REACH: T.** Kotani, NAOJ **[on-sky since 2020!]**
- **VLT/HiRISE:** A. Vigan, CNRS/LAM

Arthur Vigan - PRL - 2023-11-09

A unique window of opportunity

VLT/UT3

High-contrast exoplanet imager

High-resolution spectrograph

······ V	·	Extreme adaptive optics	· ····· >	
······ V		Coronagraphy	····· X	
······ Y J I	н к	Spectral coverage	Η С Υ	KLM
50 -	350	Spectral resolution	50 000 -	100 000

.

A unique window of opportunity

VLT/UT3

High-contrast exoplanet imager

High-resolution spectrograph

······ · · · · · · · · · · · · · · · ·	Extreme adaptive optics	······ × ·····
······ · · · · · · · · · · · · · · · ·	Coronagraphy	····· X
YJHK	Spectral coverage	Y J H K L M
50 - 350	Spectral resolution	50 000 - 100 000
	Fiber coupling	
	RISE.	

Performance and trade-off study

Scientific requirements

The instrument must:

- sci.req.2 More efficient than CRIRES standalone
 for the same science case
- sci.req.3 Provide access to H band and, if
 possible, to K band

Technical requirements

The instrument must:

- tech.req.1 Have no impact on regular operations of SPHERE, CRIRES, or UT3
- tech.req.2 Induce no modification of hardware used in regular operations
- tech.req.3 Be compatible with ESO and VLT standards

Performance and trade-off study

Scientific requirements

The instrument must:

- sci.req.2 More efficient than CRIRES standalone
 for the same science case
- sci.req.3 Provide access to H band and, if
 possible, to K band

Technical requirements

The instrument must:

- tech.req.1 Have no impact on regular operations of SPHERE, CRIRES, or UT3
- tech.req.2 Induce no modification of hardware used in regular operations
- tech.req.3 Be compatible with ESO and VLT standards

Performance and trade-off study

Scientific requirements

The instrument must:

- sci.req.2 More efficient than CRIRES standalone
 for the same science case
- sci.req.3 Provide access to H band and, if
 possible, to K band

Technical requirements

The instrument must:

- tech.req.1 Have no impact on regular operations of SPHERE, CRIRES, or UT3
- tech.req.2 Induce no modification of hardware used in regular operations
- tech.req.3 Be compatible with ESO and VLT standards

AF Lep b - $T_{exp} = 7200 \text{ s} - \text{seeing} = 0.8^{\circ}$

Otten et al. (2021)

Otten et al. (2021)

It is worth it in the H band!

Otten et al. (2021)

Otten et al. (2021)

Otten et al. (2021)

Otten et al. (2021)

Transmission budget

Transmission budget

Transmission budget

Choice of optical fiber

Choice of optical fiber

Arthur Vigan - PRL - 2023-11-09

Cladding	
Core	

Low-loss connectors

Fibers

• Rugged connectors with repeatable connection exist...

- ... but they need properly aligned fibres in the first place
- Only solution on the market: Diamond SA, Active Core Alignment → very (very) expensive

Low-loss connectors

Fibers

• Rugged connectors with repeatable connection exist...

- ... but they need properly aligned fibres in the first place
- Only solution on the market: Diamond SA, Active Core Alignment → very (very) expensive

Final choice: No connectors

Single-mode fiber coupling

How much stellar/planetary light can you inject into an SMF?

- Single-mode fiber:
 - EM₀₀ mode is quasi-Gaussian

- Telescope PSF:
 - Obstructed pupil + spiders
 - Complicated pattern

Single-mode fiber coupling

How much stellar/planetary light can you inject into an SMF?

- Single-mode fiber:
 - EM₀₀ mode is quasi-Gaussian

- Telescope PSF:
 - Obstructed pupil + spiders
 - Complicated pattern

Single-mode fiber coupling

Coupling

How much stellar/planetary light can you inject into an SMF?

- Single-mode fiber:
 - EM₀₀ mode is quasi-Gaussian

- Telescope PSF:
 - Obstructed pupil + spiders
 - Complicated pattern

Jovanovic et al. (2017)

Coupling vs. PSF centering

Coupling vs. PSF centering

Arthur Vigan - PRL - 2023-11-09

For the planet:

- 0.1 λ /D feasible, but challenging!
- 0.2 λ /D is a good baseline

Photon sharing in SPHERE

SPHERE

Photon sharing in SPHERE

SPHERE

To have or not to have [a coronagraph]?

Coupling efficiency

Transmission

To have or not to have [a coronagraph]?

Coupling efficiency

Transmission

Electronics cabinet

ØE

Output geometry AR coated 800-1850 nm Spectral dispersion CRIRES+ 3.2 m

Output geometry AR coated 800-1850 nm

Output geometry AR coated 800-1850 nm Spectral dispersion CRIRES+ 3.2 m

Output geometry AR coated 800-1850 nm

Output geometry AR coated 800-1850 nm

First light!

First light!

Commissioning results: transmission

End-to-end transmission exactly within specifications

Commissioning: stability

The science PSF moves a lot with temperature

Commissioning: stability

The science PSF moves a lot with temperature

Motion compensation is NOT straightforward

Commissioning: NCPA

Level of NCPA is acceptable and no major gain expected from compensation

Commissioning: NCPA

Level of NCPA is acceptable and no major gain expected from compensation

Commissioning: astrometry

Commissioning: astrometry

Commissioning: astrometry

• Pixel scale = 12.805 ± 0.027 mas/pix

Cross-calibration strategy with SPHERE/IRDIS

Commissioning: AO guide fiber leakage

MACAO guide fiber leaks inside the slit

Commissioning: AO guide fiber leakage

Mitigation strategy already foreseen

Commissioning: a first detection of HD984 B

Discovery: Meshkat et al. (2015)

• Value in agreement wit KPIC data (Costes et al. in prep.)

Conclusions & prospects

1. High-spectral resolution of directlyimaged exoplanets

- Unique opportunity on VLT/UT3!
- Coupling between SPHERE and CRIRES+ in H band
- Visitor instrument on the VLT
- First light in July 2023

2. HiRISE survey

- New opportunities for understanding of exoplanets
- 3 nights in November 2023
- Large programme to be submitted in P114

HiRISE core team

Maxime Lopez

50

- +Graham Murray
- +Gérard Zins
- +Jérôme Paufique
- +Ulf Seemann
- +Heiko Anwand-Heerwart
- +Mark Phillips

Arthur Vigan - PRL - 2023-11-09

