
Planetary Camera and Spectrograph (PCS) Review

Arthur VIGAN (LAM, Marseille), Patrice MARTINEZ (Lagrange, Nice)

PCS in the ELT instrumentation plan

ESO website

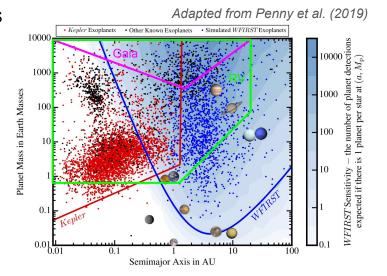
Next ELT instrument to be

R ~5, ~10 000, ~100 000

launched

 $\lambda \sim 0.6 - 1.8 \ \mu m$

Phase A > 2028

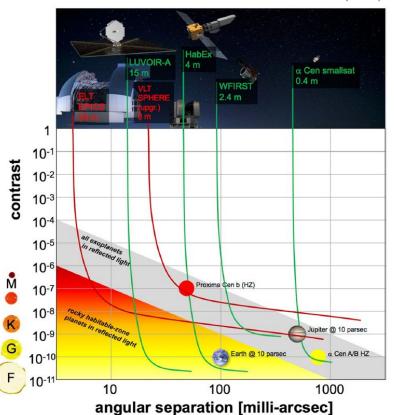

ExoELT 2 - Fréjus

Exoplanet field by PCS 1st light in ~2040

- Kepler, TESS, PLATO: nearly complete statistical census of small transiting exoplanets has been recorded
- **HARPS/NIRPS, SPIRou, CARMENES, ESPRESSO, ...:** census of most nearby small exoplanets on longer period
- **JWST & ARIEL:** spectra of some (d>10pc) giants and mini-Neptunes (maybe some rocky planets?)
- **Gaia astrometry:** huge potential from excess noise estimations to identify interesting systems
- **Gaia + Roman/CGI:** precise orbits of giant planets observable by PCS

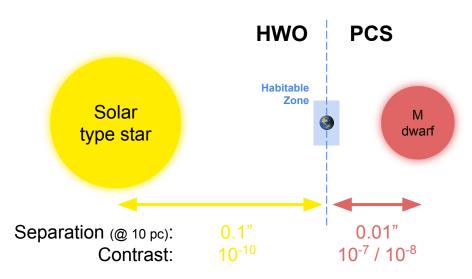
ELT 1st gen instruments (METIS, MICADO, HARMONI):

- Measured thermal continuum emission from warm protoplanets and their circumplanetary disks
- Determined the occurrence rate of long period gas giant planets (SFR, beyond ice-line)
- Characterized warm giant exoplanets through high-res spectroscopy
- Detected a few rocky exoplanets around very nearby FGK stars

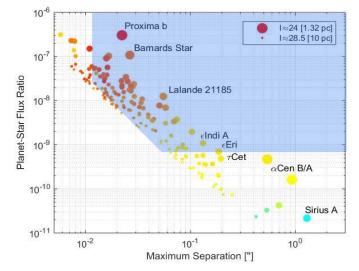


PCS science goals

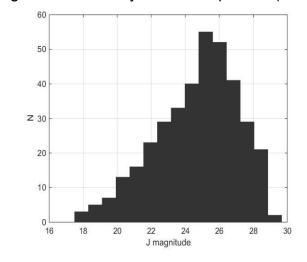
Unrivaled contrast sensitivity for sub-100 mas angular separations


- **Rocky planets:** detection, orbit determination and inclination, habitability presence of (liquid) H_2O , biosignatures (O_2 , CH_4), variation in atmospheric composition, connection to dust/debris
- **Constraining planet formation:** H α (656 nm) imaging at very high contrast and small IWA to observe small exoplanets in transitional disks. Synergy with ELT 1st light instruments (NIR and MIR)
- **Mature sub-Neptune & giant planet characterization:** orbits, compositions, formation
- **Young giant exoplanets:** high S/N enables studies of precise photometric variability
- □ Circumstellar disks and dust: imaging at ~5 mas resolution with 15 mas IWA. Synergies with ALMA (similar spatial resolution at mm wavelengths)

Contrast and angular separation


Snellen et al. (2022)

- Unique combination of angular resolution and contrast
- Major complementarity with HWO, projected to be launched in the early 2040s



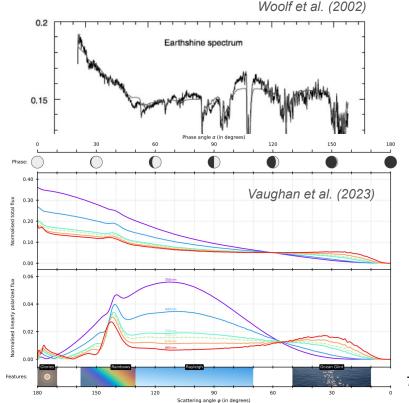
Detection and characterization of Earth analogs

Detection of Earth analogs around nearby stars

Synthetic exo-Earth population imaged in reflected light

Brightness of nearby known exoplanets (all sizes)

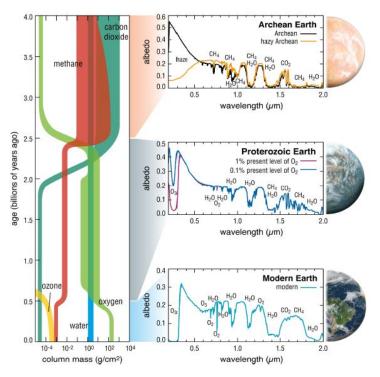
Kasper et al. (2021)


- Terrestrial planets more abundant around the abundant M-stars (~80%)
- □ Contrast ≤ 10^{-8} at 15 mas (~4 λ /D at 700 nm) and ≤ 10^{-9} at 100 mas
- Good sensitivity Detect exoplanets with I- and J-magnitudes ≥ 26

ExoELT 2 - Fréjus

Detection and characterization of Earth analogs

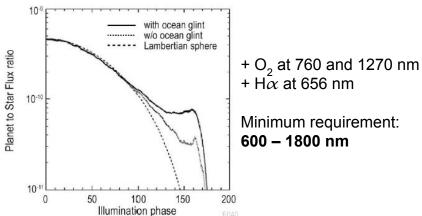
Characterization of telluric planets down to Earth size


- Potentially habitable planets
 - In habitable zone: T and surface P suitable for liquid water
 - Found by radial velocity, transits
- "Habitable" planets
 - Presence of liquid water on surface → "ocean glint" (need polarization)
 - Water vapor possible to detect
- (Possibly) planets with life
 - Presence of biomarkers (O₂, O₃, red-edge, CH₄)
 - Biomarker != Life !!!!!
- PCS anticipated as a <u>follow-up instrument</u>

ExoELT 2 - Fréjus

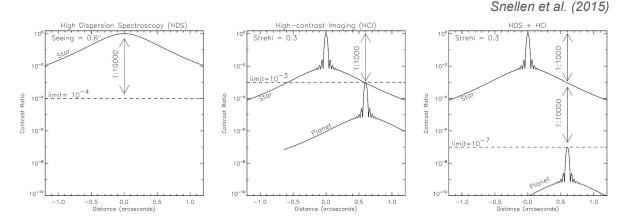
Spectral bandpass requirements

From Astro2020 Decadal Survey

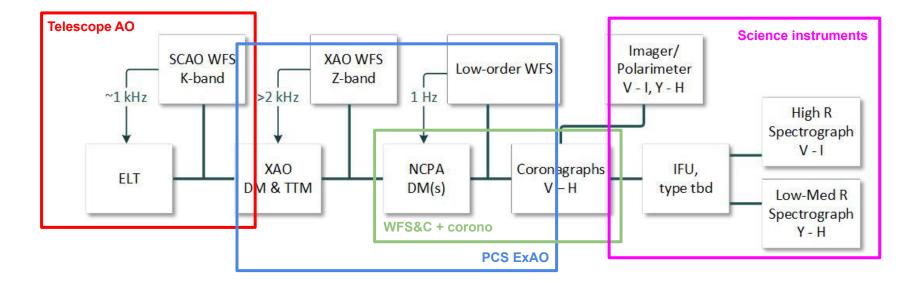


ExoELT 2 - Fréjus

Table 3-2. Desired spectral features for habitability assessment.


Habitability Markers		
Molecules/Feature	UV-VIS wavelengths (0.2–1.0 µm)	NIR wavelengths (1.0–2.0 µm)
н,0	0.65, 0.72, 0.82, 0.94	1.12, 1.4, 1.85
Н,	0.64-0.66, 0.8-0.85	
CO,		1.05, 1.21, 1.44, 1.59
СН,	0.6, 0.79, 0.89, 1.0	1.1, 1.4, 1.7
S,	0.2-0.5	
HJS	< 0.3	
S0,	< 0.3	
Ocean glint	0.8-0.9	1.0-1.05, 1.3
Rayleigh scattering	≲ 0.5	

High-level technological requirements

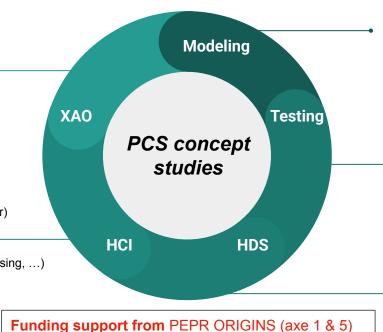

ExAO and high-dispersion spectroscopy at the core of PCS!

- PCS concept = High-Contrast Imaging + High Dispersion Spectroscopy
- □ 10⁻⁴ contrast gain by HDS demonstrated on-sky (e.g., Birkby et al. 2017, Hoeijmakers et al. 2018, Spring et al. 2022)
- \Box 10⁻⁴ 10⁻⁵ raw PSF contrast required to reach 10⁻⁸-10⁻⁹ contrast (need XAO + coronagraph)
- □ PSF residual halo is dominating noise source ➡ exposure time proportional to contrast, optimize ExAO

ExoELT 2 - Fréjus

PCS draft concept as seen by ESO

Kasper et al. (2021)


R&D activities towards PCS

A dynamic landscape in R&D

Extreme Adaptive Optics

High-order DM >10 000 actuators Wavefront sensing (PyWFS, ZeWFS, etc.) Cascade AO w/ predictive control - PO4AO SAXO+ E2E modeling RTC etc. *High-contrast imaging* QSS PSF contrast: <10⁻⁵ (HDS), <10⁻⁷ (imager) Coronagraphy WFC (NCPAs) and WFS (DH)

ELT special requirements (LWE, segment phasing, ...) Super-polished optics etc.

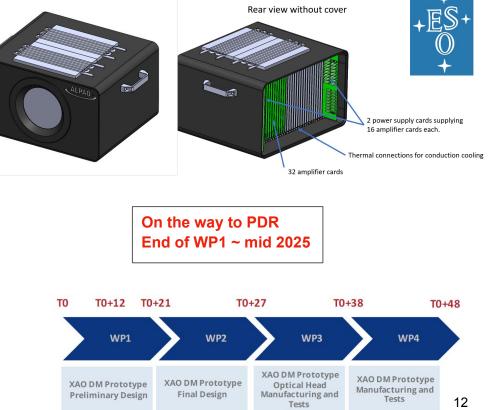
⇒ Infratech EXOSHARE (expected 2026, if selected)

Planet yield & science prep.

Instrument E2E modeling 1D/3D Exoplanet atmospheres Disks and planet-disk interactions Spectra for reflected light or thermal emission GCM models etc.

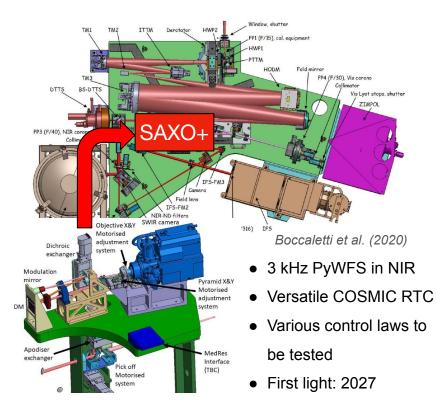
On-sky & lab. platforms

HiRISE - SAXO+ (2027) VIPA - PAPYRUS - RISTRETTO GHOST - THD2 - SPEED, etc. etc.

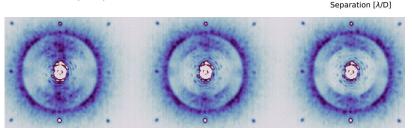

Fiber-fed spectroscopy

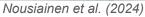
HiRISE - RISTRETTO Compact spectrographs (VIPA) Integrated optics? Coupling of PSF into fibers or slicer? Dispersion by grating or VPHG?

R&D activities towards PCS: HODM


High-order DM development

- Development with ALPAO
 - □ Many actuators: > 13000, >128 across pupil
 - □ High speed: small stroke settling < 300 us
 - □ ±3µm Stroke @ 0.2 nm resolution
 - Integrated drive electronics
- Started in March 2024
 - □ Initial Phase: Parallel dev. of 2 Concepts
 - Best / Least risky: Scaling up of existing technology
- Integrated drive electronics
 - Thermal management
 - Reduce number of connections




R&D activities towards PCS: a few examples

Second-stage extreme adaptive optics

- GHOST testbed at ESO
- Narrow- or broad-band
- SPHERE-like 1st stage AO with SLM
- Pyramid or Zernike WFS
- COSMIC RTC
- Control with integrator or PO4AO (ML)

open loop

 10^{-2}

intensity 10-3

Normalized i 01

10-

 10^{-2}

intensity 10⁻³

E 10-4

 10^{-5}

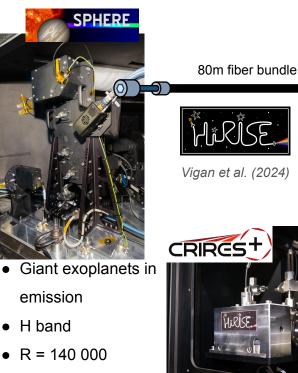
Gain

100

closed loop

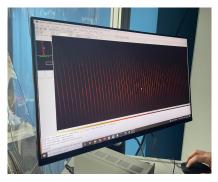
Open loop Closed loop

N'Diaye et al. (2024)


101

····· No ExAO residuals

13

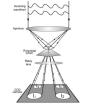

R&D activities towards PCS: a few examples

High-contrast imaging + high-dispersion spectroscopy

On-sky since 2023

VIPA compact spectrograph (Carlotti et al.)

RISTRETTO (Lovis et al. 2017)


- Planets in reflected light
- ExAO in the visible
- Few spaxels IFU
- Still in development

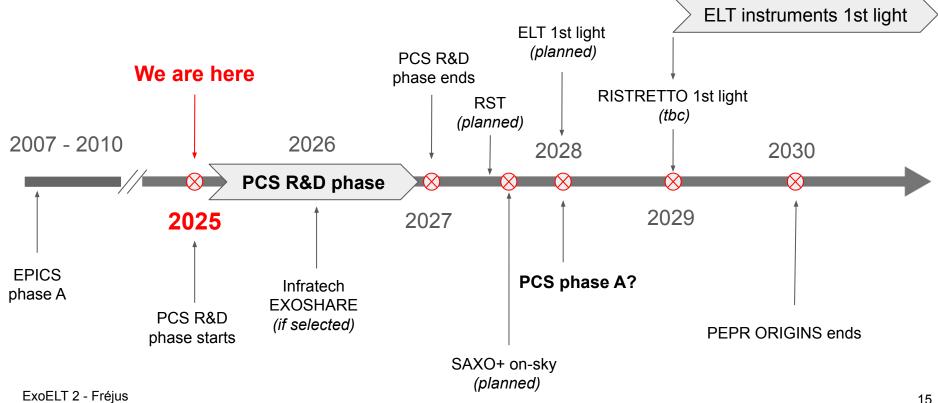
phase

VLT-UTx

8-m primary mirror

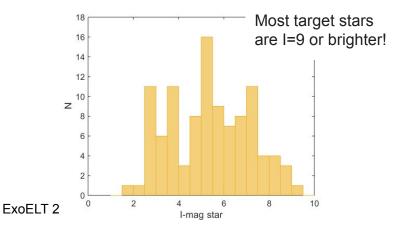
XAO system based on near-IR

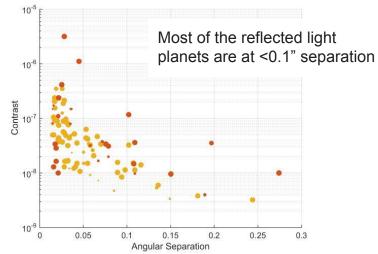
Pyramid wavefront sensor


7-spaxel coronagraphic IFU & single-mode fibers Visible high-resolution spectrograph

- Compact spectrograph
 Fested on sky
- H and K band
- R = 80 000

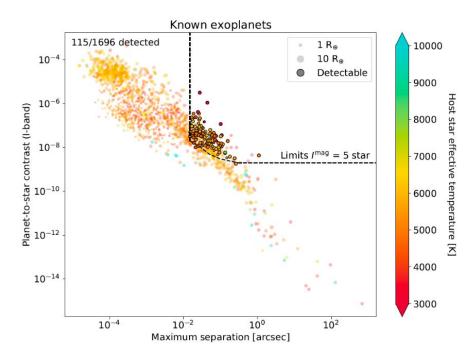
- Papyrus
- High-transmission: 50%

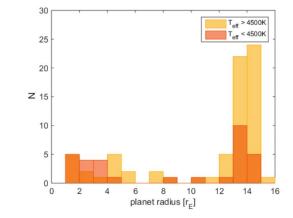

Projects Timeline


Exoplanet yield simulations

Initial yield simulations

- Simulations by Jens Kammerer & Markus Kasper
- PCS sensitivity model
 - XAO + HDS, coro residuals simulated
 - R~100 000, 700-800 nm, doppler-shifted CCF
 - 20 hours observation
 - Instrument transmission (10%)




- Two types of targets:
 - Known exoplanets
 - <u>https://exoplanetarchive.ipac.caltech.edu/</u>
 - ~1700 potential targets for PCS
 - Synthetic populations
 - Based on Kepler occurrence rates
 - Geometric albedo = 0.3
 - Randomly oriented circular orbits

Exoplanet yield simulations

PCS observable exoplanets, known systems

Detectable known exoplanets:

- ~10 Earths
- >20 Neptunes
- >70 Jupiters

Estimations to be refined

PCS R&D phase: working group set up by ESO

PCS R&D preparatory phase (2025 - 2027)

> This is NOT a phase A!

- Revise PCS science case and Top-Level Requirement
- > XAO wavefront sensing and control
- > XAO DM development
- > XAO end-2-End simulations
- Concept studies for:
 - Coronagraph(s)
 - WF sensing & control: NCPA, dark hole
 - PCS science instruments: imager / spectrograph(s), Vis / NIR, polarimetry
- System concept, science yield
 - Straw-man instrument concept: integrating AO, coronagraph & science instruments
 - Science yield prediction: data simulation, data reduction, observing program simulations

Participants:

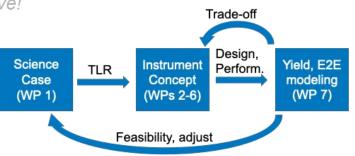
MPIA, Leiden, Geneva, Porto/Lisboa, Durham, Oxford, INSU, ETH, INAF, CNRS, Caltech, U. Michigan, IFA/Subaru

PCS R&D phase: WP structure

WP1 – Science case and TLR (G. Chauvin, S. Desidera, B. Charnay)

WP2 – Corono and WFC concept (S. Haffert, A. Potier)

WP3 – Science instr. concept (M. Tecza, F. Pedichini)


WP4 – XAO concept (M. Langlois, C. Correia)

WP5 – XAO DM development (S. Stroebele) \rightarrow ESO prerogative!

WP6 – System concept (E. Diolati, E. Stadler)

WP7 – Science yield (O. Carrion-Gonzalez, A. Vigan)

Conclusions

Getting ready for ELT-PCS

- > PCS anticipated to characterize nearby Exoplanet down to Earth-size including biosignatures
- > PCS R&D preparatory phase 2025 2027 (MoU under finalization) ⇒ Self-funded activities!
- > PCS white paper expected at the end of this period (~2027)
- > PCS expected to enter phase-A >2028
- R&D programme period can be seen as a pre-phase A
 - XAO-DM development
 - optimize XAO (WFS, predictive control of cascade AO)
 - Science, instruments, and HCI (coronagraphy, wavefront shaping)

Ultimate goal is to present strong case for PCS to ESO in 2028

Participation still possible, please contact WP resp.